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The influence of damping and source terms on solutions of nonlinear wave equations

Mohammad A. Rammaha

abstract: We discuss in this paper some recent development in the study of nonlinear wave equations.
In particular, we focus on those results that deal with wave equations that feature two competing forces.
One force is a damping term and the other is a strong source. Our central interest here is to analyze the
influence of these forces on the long-time behavior of solutions.
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1. Introduction

In this article we describe few recent results associated with nonlinear evolution equations. Our
primary interest lies in global existence, finite time blow-up, and regularity of solutions. Such
questions have been studied by many authors. In particular, we refer the reader to the monographs
[20], [43], the review article [44], and the references therein.

However, until recently, very little work has been done on the problem of global existence, blow-
up and asymptotic behavior of solutions to nonlinear wave equations under the influence of nonlinear
damping; particularly when the damping term is degenerate. Such evolution equations with damping
arise naturally in many contexts. For example, in the context of fluid flows, viscosity effects often
appear as damping terms in evolution equations. Also, in classical mechanics, the physical problems
of vibrating membranes, strings or shells in elastic media, damping terms reflect the internal energy
that is dissipated by the motion.

We consider nonlinear wave equations of the form

utt −∆u + G0(x, t, u, ut) = F0(x, t, u), (1.1)

and systems of the form

utt −∆u + G1(x, t, u, v, ut) =F1(x, t, u, v),
vtt −∆v + G2(x, t, u, v, vt) =F2(x, t, u, v), (1.2)
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where the nonlinearities Fk and Gk, k = 0, 1, 2, satisfy certain structural conditions, so that the
terms Gk provide damping and the terms Fk provide strong sources to the system. Various forms of
(1.1)-(1.2) arise in many contexts. If, for example, G0 ≡ 0 and F0(x, t, u) = u3, or more generally,
any positive odd power of u, then the equation arises in quantum field theory (see Jörgens [21] and
Segal [40]). On the other hand, if F0 ≡ 0 and G0(x, t, u, ut) = aut, or more generally aut + bu3

t

then the equation provides a simple model for a classical vibrating membrane with a resistance force
that is proportional to the velocity ut. We shall refer to such damping terms in this paper as non-
degenerate, i.e., damping terms that depend only on the velocity. Indeed, in this case, equation (1.1)
can be treated via the theory of monotone operators and the full well-posedness of strong solutions
(in the terminology of monotone operator theory) is now classical [8]. In addition, the presence of
F0(x, t, u) as a locally Lipschitz source term from H1(Ω) into L2(Ω) does not affect the arguments
for establishing the existence of local solutions via perturbation theory of monotone operators.

However, in general the proportionality coefficients in the damping term aut + bu3
t are non-

constants and they may depend on the longitudinal displacement u, ∇u and other physical quantities.
Studying nonlinear wave equations with a damping term which also depends on the longitudinal
displacement u(x, t) is more subtle. Indeed, the dependence on u in the damping term will lead to
the degeneracy of the well celebrated monotonicity argument [8,33] which has been the key ingredient
for establishing any kind of well-posedness results for many years. For this very reason, we refer to
such damping terms as degenerate damping terms.

It should be noted here that when damping is absent from the equation, the source term may
drive solutions of (1.1) and (1.2) to blow up in finite time. In fact, when Gk ≡ 0, k = 0, 1, 2, one can
appeal to a variety of methods (see [16,27,35,50]) to show that most solutions of (1.1) and (1.2) blow
up in finite time. In addition, if the source term is removed from the equation, then damping terms
of various forms are known to yield existence of global solutions, (see [2,6,8,19]). However, when
both damping and source terms are present in the equation, then the analysis of their interaction
and their influence on the global behavior of solutions becomes more difficult. We refer the reader
to [9,10,15,28,30,36,38,41,47] and the references therein.

At this end, we remark that throughout the paper, Ω is a bounded domain in Rn with a smooth
boundary Γ = ∂Ω. Also, the following notation will be used in the sequel:

|u|s,Ω ≡ |u|Hs(Ω) and ‖u‖p ≡ ‖u‖Lp(Ω) ,

where Hs(Ω) and Lp(Ω) stands for the classical Sobolev spaces and the Lebesgue spaces, respectively.

2. Interior damping and source terms

In 1994 Georgiev and Todorova [15] studied the following initial-boundary value problem:

utt −∆u + |ut|m−1ut = |u|p−1
u, in Ω× (0, T ) ≡ QT ,

u(x, 0) = u0(x) ∈ H1
0 (Ω), ut(x, 0) = u1(x) ∈ L2(Ω), (2.1)

u = 0, on Γ× (0, T ),

where m, p > 1. The authors in [15] were able to prove the following important results.

Theorem 2.1. [15] Let u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω). Further assume that p,m > 1 and p ≤ n

n−2 if
n > 2. Then, there exists a unique local weak solution u to (2.1) defined on [0, T ] for some T > 0,
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with
u ∈ C([0, T ],H1

0 (Ω)), ut ∈ C([0, T ], L2(Ω)) ∩ Lm+1(Ω× (0, T )).

In addition,

• If p ≤ m, then the said weak solution is global and T may be taken arbitrarily large.

• If p > m and E(0) < 0, where E(0) is the initial energy given by

E(0) :=
1
2

(∥∥u1
∥∥2

2
+

∥∥∇u0
∥∥2

2

)
− 1

p + 1

∥∥u0
∥∥p+1

p+1
,

then, the said weak solution to (2.1) blows up in a finite time.

Although, the statement of the blow up Theorem in [15] required a large negative initial energy,
their proof can be adjusted easily and one can obtain the same result without the largeness assump-
tion on E(0) < 0. Nonetheless, the blow up result in [15] ignited a lot of interest in wave equations
under the influence of both damping and source terms. In fact, the basic calculus of the proof of
the blow up Theorem in [15] was later extended by Levine and Serrin [28] to accommodate other
abstract evolution equations. In addition, the core ideas of the proof of the blow up Theorem in
[15], including the choice of the special Liapunov’s function, was used, with the proper adjustment,
by many authors. We mention only [3,9,13,36].

In what follows we will discuss few recent results that were inspired by [15]. We begin with some
of the results that have appeared in [9].

With j(s) is a continuous, convex real valued function defined on R, j′ is its derivative, and Ω
is a bounded domain in Rn with a smooth boundary Γ; the authors in [9] considered the following
model:

utt −∆u + |u|kj′(ut) = |u|p−1
u, in Ω× (0, T ) ≡ QT ,

u(x, 0) = u0(x) ∈ H1
0 (Ω), ut(x, 0) = u1(x) ∈ L2(Ω), (2.2)

u = 0, on Γ× (0, T ),

where (2.2) is studied under the following conditions imposed on the convex function j and the
parameters k, m, p.

Assumption 2.2. • k, m, p ≥ 0. In addition, k ≤ n
n−2 , p + 1 < 2n

n−2 , if n ≥ 3.

• Coercivity condition: j(s) ≥ c|s|m+1, where c > 0.

• Strict monotonicity: (j′(s)− j′(v))(s− v) ≥ c1|s− v|m+1, where c1 > 0.

• Continuity: |j′(s)| ≤ c0|s|m + c2, for some constants c0 > 0, c2 ≥ 0.

A special case of (2.2) is the following well known polynomially damped wave equation studied
extensively in the literature (see for instance [36,38]).

utt −∆u + |u|k |ut|m−1
ut = |u|p−1

u, in Ω× (0, T ) ≡ QT ,

u(x, 0) = u0(x) ∈ H1
0 (Ω), ut(x, 0) = u1(x) ∈ L2(Ω), (2.3)

u = 0, on Γ× (0, T ),
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Indeed, by taking j(s) = 1
m+1 |s|m+1, then obviously j′(s) = |s|m−1s, and therefore Assumption 2.2

is satisfied. It is also easy to see in this case that problem (2.2) is equivalent to (2.3).
It should be noted here that if k = 0 then (2.2) can be treated via perturbation theory of

monotone operators [8]. however, the situation is different when the damping term is degenerate
(k > 0), leading to the degeneracy of the monotonicity argument. In fact, when k > 0, (2.3) is no
longer a locally Lipschitz perturbation of a monotone problem (even in the case when p ≤ n

n−2 , i.e.,
the source term is a locally Lipschitz function from H1(Ω) into L2(Ω)). Thus, standard monotone
operator theory and the celebrated method of Lions and Strauss [33] do not apply. This fact
combined with a potential strong growth of the damping term (the case when m > 1), makes the
problem interesting mathematically and the analysis more subtle. In fact, one needs to be careful
about the meaning of the solution and its relation to the equation.

In discussing finite energy solutions to (2.2) (i.e., (u, ut) ∈ H1(Ω) × L2(Ω)) we need to impose
another restriction on the parameters p,m, k:

p ≤ max{p∗

2
,
p∗m + k

m + 1
}; p∗ ≡ 2n

n− 2
. (2.4)

We should note here that the range of values of the parameter p is beyond what is required for the
source term to be a locally Lipschitz function from H1(Ω) into L2(Ω)), as typically assumed in the
literature. For instance, in [15] the restriction p ≤ p∗

2 was crucial, in the non-degenerate case k = 0,
for establishing the existence of local and global solutions of finite energy on a bounded domain.
Instead, condition (2.4) allows “supercritical” values of p provided p∗(m− 1) + 2k > 0.

The first main result in [9], which establishes local and global existence of generalized solutions,
reads as follows:

Theorem 2.3. [9] Generalized solutions. Under Assumption 2.2 and condition (2.4), there
exists a local generalized solution to (2.2) defined on (0, T ) for some T > 0. That is, there exists
T > 0 and a function u satisfying u(0) = u0 ∈ H1

0 (Ω), ut(0) = u1 ∈ L2(Ω), u ∈ Cw([0, T ],H1
0 (Ω)) ∩

C1
w([0, T ], L2(Ω)) with |u|kj(ut) ∈ L1(Ω × (0, T )); and for all 0 < t ≤ T the following inequality

holds:
∫ t

0

∫

Ω

(ut vt −∇u∇v)dxdt + 1/2
∫

Ω

[u2
t (t) + |∇u(t)|2]dx

+
∫ t

0

∫

Ω

|u|k[j(ut)− j(v)]dxdt

≤
∫ t

0

∫

Ω

|u|p−1u(ut − v)dxdt+1/2
∫

Ω

[u2
1 + |∇u0|2 − 2u1v(0)]dx (2.5)

for all test functions v satisfying

v ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩ L∞(Ω× (0, T )), v(t) = 0.

In addition,

• If p ≤ k + m, then the said generalized solution is global and T may be taken arbitrarily large.
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• The said generalized solution satisfies the following energy inequality:

|u(t)|1,Ω + |ut(t)|0,Ω +
∫ t

0

∫

Ω

|u|kj(ut)dxdτ ≤ CT (|u0|1,Ω, |u1|0,Ω), (2.6)

for all t ∈ [0, T ].

We should point out here that the generalized solutions furnished by Theorem 2.3 are obtained
without any restriction on parameter m. So, one would wonder how these solutions relate to weak
solutions that have been obtained in the literature [36] but only in the special case when k > 0,
j(s) = 1

m+1 |s|m+1, m < 1, and subject to (2.7). It turned out, as stated in Corollary 2.4 below, that
for these special cases with additional restrictions imposed on the parameters k, m, the generalized
solutions in Theorem 2.3 become unique weak solutions in the classical sense of weak solutions (i.e.,
solutions that verify a classical variational equality). Thus a particular specialization of Theorem
2.3 to a much narrower range of parameters fully recovers and generalizes (to a larger class of
damping functions j(s)) the results obtained in [36]. Indeed, it has been shown in [9] a particular
specialization of Theorem 2.3 yields the following Corollary.

Corollary 2.4. [9] In addition to Assumption 2.2 and condition (2.4) further assume that
{

m < 1 if n = 1, 2;
k
p∗ + m

2 ≤ 1
2 , if n ≥ 3.

(2.7)

Then, there exists a local weak solution to (2.2) which is defined on an interval (0, T ), for some
T > 0. Moreover,

• The said solution satisfies the following energy identity:

E(t) :=
1
2

(
‖u′(t)‖22 + ‖∇u(t)‖22

)
− 1

p + 1
‖u(t)‖p+1

p+1

+
∫ t

0

∫

Ω

|u(τ)|k j′(u′(τ))u′(τ)dxdτ = E(0). (2.8)

• If p ≤ k + m then the said solution is global and T may be taken arbitrarily large.

• If k, p ≥ 1 then the said solution is unique and depends continuously on the initial data.

The authors in [9] also addressed the interesting critical case when m = 1. We know that
generalized solutions exit in this case, as asserted by Theorem 2.3. But do we have weak solutions?
If so, are these solutions unique? A positive answer to this question is provided by the next theorem.

Theorem 2.5. [9] The case m = 1. In addition to Assumption 2.2, assume that k + 1 ≤ p∗

2 .
Then, there exists a local weak solution u to (2.3) (i.e., when j(s) = 1

2 |s|2 and j′(s) = s) such that
u ∈ Cw([0, T ],H1

0 (Ω)) ∩ Cw([0, T ], L2(Ω)), ∆u− utt ∈ L1(Ω× (0, T )) where u satisfies
∫ t

0

∫

Ω

(utt −∆u)vdxdt +
∫ t

0

∫

Ω

|u|kj′(ut)vdxdt

=
∫ t

0

∫

Ω

|u|p−1uvdxdt

u(0) = u0, ut(0) = u1 (2.9)

for all test functions v ∈ L∞(Ω× (0, T )), and T may be finite. In addition,
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• If p ≤ k + 1, then the said weak solution is global and T may be taken arbitrarily large.

• If p ≥ 1, then such a solution u is unique, but it may not be continuously dependent on the
initial data in the finite energy norm.

The next issue that was addressed in [9] is the issue of propagation of regularity. This means that
more regular data produce more regular solutions. In fact, the result below states that this is always
the case locally (i.e., for sufficiently small times). However, in the special case when the parameter
p is below the critical value k + m, then the propagation of regularity is a global phenomena.

Theorem 2.6. [9] Strong (regular) solutions. With the validity of Assumption 2.2, further
assume that n < 5 and

k ≥ 1, 2 ≤ p <
4

n− 2
+ 1, m + 1 <

n

n− 2
, k + m <

4
n− 2

+ 1.

Then, for every initial data satisfying u0 ∈ H2(Ω) ∩H1
0 (Ω), u1 ∈ H1

0 (Ω), there exists T0 > 0 such
that (2.2) has a local solution u with the regularity that u ∈ C([0, T ],H2(Ω))∩C1([0, T ],H1(Ω)), for
some T ≤ T0 where T0 may be finite.

In addition, if we assume that p ≤ k + m, p ≤ p∗

2 , and either k = 0 or else k
p∗ + m

2 ≤ 1
2 , then the

said regular solutions are global and T0 can be taken arbitrarily large.

Remark 2.7. We note here that the second part of the Theorem 2.6 provides regular solutions in
the context of Corollary 2.4. Thus, the weak solutions established in Corollary 2.4 become regular
provided the initial data are taken in H2(Ω) ∩H1

0 (Ω)×H1(Ω).

Remark 2.8. For n < 4 the proof of Theorem 2.6 allows us to assume that m + 1 ≤ n
n−2 and

k + m ≤ 4
n−2 + 1 instead of the strict inequalities as assumed in the statement of Theorem 2.6. See

[9] for more details.

We now move the discussion towards recent blow up results. The blow up Theorem that appeared
in [9,36,38] are more restrictive and they only deal with weak solutions that satisfy a variational
equality with the added requirement that ¤u and |u|kj(ut) ∈ L2(Ω × (0, T )). Indeed, with this
added regularity one can establish an energy identity for the weak solutions in [9], which is needed
in the proof of the blow-up Theorem. In addition, the mentioned regularity requirement for the
weak solutions in [9] forces very strong limitations on the values of m. Since generalized solutions
exists for all values of m > 0, as asserted by Theorem 2.3, this raises the question of how one obtains
a blow up Theorem for generalized solutions.

The first thing we should note here that a direct extension or modification of the proof of the
blow-up Theorem given in [9] does not apply for generalized solutions. The reason for this is that the
proof in [9] takes advantage of an energy identity (implied by the definition of weak solutions), and
it also uses the variational form of equation; however generalized solutions do not posses, generally,
any of these two properties. However, the authors in [11] were able to find necessary conditions (see
Theorem 2.9 below) which guarantee that generalized solutions satisfy a suitable variational equality
but without the additional requirement that ¤u ∈ L2(Ω × (0, T )) or |u|kj(ut) ∈ L2(Ω × (0, T )).
Nevertheless, we still do not have an energy identity in [11] as in the case of weak solutions.

In order to state Theorem 2.9, we should specify the range of parameters k, p,m for which local
generalized solutions do exist, but the condition k + m ≥ p (which results in a global solution) is
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violated. This leads to the following range of parameters:

k ≤ p∗

2
, p + 1 < p∗, p∗ =

2n

n− 2

p ≤ max{p∗

2
,
p∗m + k

m + 1
}, k + m < p. (2.10)

The main result in [11] reads as follows:

Theorem 2.9. [11] Let u be generalized solution to (2.2) satisfying (2.5) and assume that the pa-
rameters p,m, k satisfy the conditions in (2.10). Further assume that either ut ∈ Lm+1(0, T ; H1

0 (Ω))
or ut ∈ Ls(QT ), where s ≡ max{ p∗

p∗−p , p∗(m+1)
p∗−k }. If E(0) < 0, where E(0) is the initial energy given

by

E(0) =
1
2

(
‖u1‖22 + ‖∇u0‖22

)
− 1

p + 1
‖u0‖p+1

p+1 ;

then, the said generalized solution u blows up in a finite time.

Remark 2.10. Any one of the conditions ut ∈ Lm+1(0, T ; H1
0 (Ω)) or ut ∈ Ls(QT ) guarantees that

generalized solutions satisfy a suitable variational equality. It should be noted here that neither
of the conditions ut ∈ Lm+1(0, T ;H1

0 (Ω)) or ut ∈ Ls(QT ) imply that |u|kj(ut) ∈ L2(Ω × (0, T ));
nor they imply each other. In addition, the corresponding generalized solutions do not necessarily
satisfy an energy identity as in the case of weak solutions. Hence, the blow up Theorem in [9]
does not cover the class of generalized solutions considered in [11]. We should note also that the
class of generalized solutions considered in [11] that satisfies the added regularity assumption that
ut ∈ Lm+1(0, T ; H1

0 (Ω)) or ut ∈ Ls(QT ) include the class of strong solutions established in [9], at
least for some of the range of the parameters.

3. Other related results

Recently, some of the ideas in [9,15,36] have been extended to study certain systems of wave
equations. We mention here only the recent results in [3].

Let F : R2 −→ R be the C1-function given by

F (u, v) = a |u + v|p+1 + 2b |uv| p+1
2 ,

where p ≥ 3, a > 1 and b > 0. Let f1(u, v) = ∂F
∂u (u, v) and f2(u, v) = ∂F

∂v (u, v) for (u, v) ∈ R2.
Throughout the following discussion, Ω is a bounded domain in Rn with a smooth boundary Γ = ∂Ω;
and n = 1, 2, 3.

The authors in [3] studied the global well-posedness of the following initial-boundary value
problem:

utt −∆u + |ut|m−1ut = f1(u, v), in Ω× (0, T ) ≡ QT ,

vtt −∆v + |vt|r−1vt = f2(u, v), in Ω× (0, T ) ≡ QT ,

u(x, 0) = u0(x) ∈H1
0 (Ω), ut(x, 0) = u1(x) ∈ L2(Ω), (3.1)

v(x, 0) = v0(x) ∈H1
0 (Ω), vt(x, 0) = v1(x) ∈ L2(Ω),

u = v =0, on Γ× (0, T ).
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System of nonlinear wave equations such as (3.1) goes back to Reed [39] in 1976 who proposed a
similar system in three space dimensions but without the presence of the damping terms |ut|m−1ut

and |vt|r−1vt. The nonlinearities f1(u, v) and f2(u, v) in (3.1) act as strong source terms in the
system (3.1). In addition, the functions f1, f2 and F enjoy certain properties. First, it is easy
to see that F (u, v) ≤ c1(|u|p+1 + |v|p+1), for all (u, v) ∈ R2, where c1 = 2pa + b. Moreover, a
quick computation will show that for a fixed a, p > 1, there exists a constant c0 > 0 such that
F (u, v) ≥ c0(|u|p+1 + |v|p+1), for all (u, v) ∈ R2, provided b is chosen large enough. Also, it is easy
to see that uf1(u, v) + vf2(u, v) = (p + 1)F (u, v) for all (u, v) ∈ R2. Hence, the following conditions
were assumed in [3]:

Assumption 3.1. • m, r ≥ 1; p ≥ 3 if n = 1, 2; p = 3 if n = 3.

• u0, v0 ∈ H1
0 (Ω), u1, v1 ∈ L2(Ω).

• There exists constants c0, c1 > 0 such that

c0(|u|p+1 + |v|p+1) ≤ F (u, v) ≤ c1(|u|p+1 + |v|p+1) for all (u, v) ∈ R2. (3.2)

• In addition,

f1(u, v) = (p + 1)
[
a|u + v|p−1(u + v) + b|u| p−3

2 |v| p+1
2 u

]
,

f2(u, v) = (p + 1)
[
a|u + v|p−1(u + v) + b|v| p−3

2 |u| p+1
2 v

]
,

uf1(u, v) + vf2(u, v) = (p + 1)F (u, v) for all (u, v) ∈ R2. (3.3)

We can summarize most of the results in [3] in the following Theorem.

Theorem 3.2. [3] Assume the validity of Assumption 3.1. Then, there exists a unique local weak
solution (u, v) to (3.1) defined on [0, T ] for some T > 0; with u, v ∈ C([0, T ],H1

0 (Ω)), ut, vt ∈
C([0, T ], L2(Ω)), ut ∈ Lm+1(Ω× (0, T )), vt ∈ Lr+1(Ω× (0, T )), and u satisfies the following energy
identity:

E(t) +
∫ t

0

∫

Ω

|u′(τ)|m+1dxdτ +
∫ t

0

∫

Ω

|v′(τ)|r+1dxdτ = E(0), (3.4)

where

E(t) :=
1
2

(
‖u′(t)‖22 + ‖v′(t)‖22 + ‖∇u(t)‖22 + ‖∇v(t)‖22

)

−
∫

Ω

F (u(t), v(t))dx. (3.5)

In addition

• If p ≤ min{m, r}, then the said weak solution (u, v) is global and T may be taken arbitrarily
large.

• If p > max{m, r} and E(0) < 0, where E(0) is the initial energy given by

E(0) :=
1
2

(∥∥u1
∥∥2

2
+

∥∥v1
∥∥2

2
+

∥∥∇u0
∥∥2

2
+

∥∥∇v0
∥∥2

2

)
−

∫

Ω

F (u0, v0)dx;

then, the said weak solution (u, v) blows up in finite time.
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More recently, Alves and Cavalcanti [4] studied the global existence, uniform stabilization and
blow up in finite time, for solutions of the following damped nonlinear problem





utt −∆u + h(ut) = g(u) in Ω× (0,∞),
u = 0 on Γ× (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(3.6)

where Ω is a bounded domain of R2 having a smooth boundary ∂Ω = Γ, g is (a source) assumed to
have a exponential growth at the infinity and h is a monotonic continuous increasing function.

As it was emphasized in [4], there is a strong connection between the well-posedness of (3.6) and
the theory of elliptic problems, particularly the well known mountain passel level. More precisely,
we define the functional J : H1

0 (Ω) → R by

J(u) :=
1
2

∫

Ω

|∇u|2 dx−
∫

Ω

G(u) dx, (3.7)

where G(u) =
∫ u

0
g(s) ds. The critical points of the functional J are the weak solutions of the elliptic

problem {
−∆u = g(u) in Ω

u = 0 on Γ.

Also, related to the functional J is the well known Nehari manifold given by:

N :=
{
u ∈ H1

0 (Ω) : J ′(u)u = 0, u 6= 0
}

= {u ∈ H1
0 (Ω) :

∫

Ω

|∇u|2 dx =
∫

Ω

g(u)u dx, u 6= 0}. (3.8)

If g satisfies suitable properties, it is possible to prove that the mountain pass level d satisfies the
following equality (for instance, see Willem [53])

d := inf
u∈N

J(u). (3.9)

Put

W = {u ∈ H1
0 (Ω); J(u) < d}, (3.10)

W1 = {u ∈ W :
∫

Ω

|∇u|2 dx >

∫

Ω

g(u)u dx} ∪ {0}, (3.11)

W2 = {u ∈ W :
∫

Ω

|∇u|2 dx <

∫

Ω

g(u)u dx}. (3.12)

The energy associated to (3.6) is given by

E(t) :=
1
2

∫

Ω

|ut(x, t)|2 dx + J(u(t)). (3.13)

By assuming E(0) < d, the authors in [4] were able to prove the existence of a global weak solution
to (3.6) if the initial datum u0 ∈ W1, u1 ∈ L2(Ω). On the other hand, if u0 ∈ W2 then local weak
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solutions to (3.6) blow up in finite time. We should mention here that the main ingredients used
in the proofs in [4] are the Trudinger-Moser inequality (see [34,49]) and the well known Mountain
Pass level due to Ambrosetti and Rabinowitz [5].

In order to state some of the results established in [4] we list the technical conditions on the
functions g and h.

Assumption 3.3. [4]
Assume that g : R → R is a C1 function and h : R → R is a monotonic increasing continuous

function verifying:

• For each β > 0, there exists a positive constant Cβ such that

|g′(t)|, |g(t)| ≤ Cβeβt2 , for all t ∈ R. (3.14)

• In addition, the function g satisfies the following condition near the origin

lim
t→0

g(t)
t

= 0. (3.15)

• The function g(t)/t is a increasing function in (0,+∞).

• There exist constants C0, C1 > 0 such that the function h satisfies:

h(t) t ≥ 0 for all t ∈ R, (3.16)
h(t)t ≤ C0|t|q, for all |t| ≥ 1 and for some q > 1, (3.17)

(h(s)− h(t))(s− t) ≥ C1

(|s|q−2 s− |t|q−2 t
)
(s− t), for all s, t ∈ R. (3.18)

An example of such a function g is

g(t) := |t|p−2t eC |t|α for all t ∈ R,

where p > 2, C > 0 and α ∈ (1, 2) is fixed.
The first main result in [4] which establishes the existence of local solutions of (3.6) reads as

follows.

Theorem 3.4. [4] Assume the validity of Assumption 3.3. Then, there exists a unique weak solution
u of (3.6) defined on [0, T ], for some T > 0 such that

u ∈ C0([0, T ],H1
0 (Ω)) ∩ C1([0, T ], L2(Ω)), ut ∈ Lq(Ω× (0, T )).

In addition, the said weak solution u satisfies the energy identity:

E(t)− E(s) +
∫ t

s

∫

Ω

h(ut)ut dx dτ =
∫ t

s

∫

Ω

g(u) ut dx dτ,

for 0 ≤ s ≤ t ≤ T .

In order to obtain a global weak solution to (3.6), it is necessary to enforce one more condition
on the function g.



Nonlinear Wave Equations 87

Assumption 3.5. [4] There exists θ > 2 such that

0 < θG(t) < g(t) t for all t ∈ R \ {0}. (3.19)

Remark 3.6. We note here that (3.19) is the well known Ambrosetti-Rabinowitz condition, widely
used in elliptic problems. In addition, the assumptions (3.14), (3.15) and (3.19) guarantee that the
level d of the mountain pass can be characterized by expression given by (3.9).

The next result in [4] reads as follows.

Theorem 3.7. [4] In addition to the validity of Assumption 3.3 and 3.5, assume that (u0, u1) ∈
W1 × L2(Ω) and E(0) < d. Then, the weak solution u of (3.6) furnished by theorem 3.4 is a global
solution and T may be taken arbitrarily large. Moreover, u(t) ∈ W1 for all t ≥ 0.

Before stating the stability result in [4], we need to introduce certain important functions. Such
functions were first introduced in the literature by Lasiecka and Tataru [26] for attractive forces
and recently extended by Cavalcanti, Domingos Cavalcanti and Lasiecka [13] for repulsive forces
(sources). Following [13,26], Let h∗ be a concave, strictly increasing function, with h∗ (0) = 0, and
such that

h∗ (s h(s))) ≥ s2 + h2(s), for |s| < 1. (3.20)

We note here that with the hypotheses on the h in Assumption 3.3, the construction of such a
function h∗ is straightforward. With this function, define

r(.) = h∗(
.

meas (QT )
), QT = Ω× (0, T ). (3.21)

As r is strictly increasing, then cI + r is invertible for all c ≥ 0. For K a positive constant, put

p(x) = (cI + r)−1 (Kx) , K := (Cθ,d meas(QT ))−1, (3.22)

where Cθ,d is a positive computable constant (see [4] for more details).
Clearly the function p is positive, continuous and strictly increasing with p(0) = 0. Finally, put

q(x) = x− (I + p)−1 (x) . (3.23)

Now, we are able to state the following stability result in [4].

Theorem 3.8. [4] Assume the validity of the assumptions of Theorem 3.7 with q = 2 (see (3.17)).
Let u be the global weak solution of problem (3.6) furnished by Theorem 3.7. With the energy E(t)
as defined in (2.8), then there exists T0 > 0 such that

E(t) ≤ S

(
t

T0
− 1

)
, ∀t > T0, (3.24)

with lim
t→∞

S(t) = 0, where the contraction semigroup S(t) is the solution of the differential equation

d

dt
S(t) + q(S(t)) = 0, S(0) = E(0), (3.25)

where q is as given in (3.23). Here the constant c (from definition (3.22)) is taken to be c ≡ 1
meas(QT ) .



88 M. A. Rammaha

In order to state the blow up result in [4], the following additional Assumption will be needed.

Assumption 3.9. [4]

• Suppose that
E(0) ≤ 0 or 0 ≤ E(0) < γ d, for some γ ∈ (0, 1) (3.26)

with γ ≈ 0 and d is the level of the mountain pass associated with the corresponding elliptic
problem.

• Assume
h(t) = t. (3.27)

• There exists θ > 3 + 1
λ1

such that

0 < θ G(t) < g(t) t for all t ∈ R \ {0}, (3.28)

where λ1 represents the first eigenvalue of −∆ operator with a Dirichlét boundary condition.

Theorem 3.10. [4] With the validity of Assumption 3.3 and Assumption 3.9, further assume that
(u0, u1) ∈ W2 × L2(Ω). Then, there exists T > 0 such that u blows-up in the L2 norm of Ω as
t → T−.

Remark 3.11. The linear damping h(t) = t in Theorem 3.10 is not strong enough to overcome the
very strong source in (3.6). Indeed, if E(0) < 0, then one can modify the proof in [15] to obtain a
blow up result, without having the assumption that u0 ∈ W2.
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